COUNTABLE CONNECTED SPACES

GARY GLENN MILLER

ABstrACT. Two pathological countable topological spaces are
constructed. Each is quasimetrizable and has a simple explicit quas-
imetric. One is a locally connected Hausdorff space and is an exten-
sion of the rationals. The other is a connected space which becomes
totally disconnected upon the removal of a single point. This space
satisfies the Urysohn separation property—a property between T
and T;—and is an extension of the space of rational points in the
plane. Both are one dimensional in the Menger-Urysohn [induc-
tive] sense and infinite dimensional in the Lebesgue [covering]
sense.

1. Introduction. The first example of a countable connected
Hausdorff space was given by Urysohn [18]. Other examples have
been given by Hewitt [7], Bing [1], Brown [2], Golomb [6], Martin
[10], Roy [15], Kirch [8], Stone [17], and Miller and Pearson [13].

A connected space X has a dispersion point x provided X —x is
totally disconnected. X is a Urysohn space if for all distinct p and ¢
in X there are neighborhoods U and V of p and ¢ respectively such
that U and V have disjoint closures.

The first example of a space having a dispersion point was given
by Knaster and Kuratowski [9]. Such spaces have been investigated
by Erdés [3] and Wilder [19]. Roy [15] has given an example of a
countable connected Urysohn space having a dispersion point.
Kirch [8] has given an example of a locally connected countable
connected Hausdorff space. Stone [17] has also announced the con-
struction of such an example. Recently Franklin and Krishnarao
[5] have announced an interesting application of such an example
due to F. B. Jones (unpublished).

The examples presented here are obtained by extending a metric
space by adjoining countably many limit points and extending the
distance function to a quasimetric. A real valued function D(x, y) is
a quasimetric for a topological space provided that for points x, y, 2
of the space:

1. D(x, y) =0, the equality holding iff x =4y.

2. D(x, y)+D(y, 2) = D(x, 2).
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3. The collection of e-balls, B(x, €) = {y:D(x, ¥) <e}, is a base for
the topology of the space.

Therefore a symmetric quasimetric is a metric. There are just two
essentially different ways of writing the triangle inequality (2); one
implies symmetry—D((x, ¥) = D(y, x)—the other, as we have written
it, does not.

The following characterization, originally due to Ribeiro [16], in-
dicates the severity of the existence of a quasimetric. A T space X
is quasimetrizable iff each point p has a base for its neighborhood
system X =Gi(p), G2(p), - - - such that for any points x and ¥,
X EGra(y) implies Gap1(x) SGa(y) for n=1, 2, - - - . Relations be-
tween Moore, metric and quasimetric spaces have been investigated
by Stoltenberg [16]; related work may also be found in [4] and [14].

The following examples indicate that a quasimetric space can be
quite pathological even though its distance function is the Euclidean
metric when restricted to a dense open subspace.

2. A countable locally connected quasimetric extension of the
rationals. This connected Hausdorff space has differing inductive and
covering dimensions and is not a Urysohn space.

Construction. Let Q be the set of rational points on the x-axis, and
M the set of points above the x-axis with both coordinates rational.
Let m be a point of M. Define F(m) = {r, s} where » and s are the
points of the x-axis which together with m are the vertices of an
equilateral triangle. Note that F(m) does not intersect S=Q\UM.
Let x and y be points of S. If x is a point of Q and y a point of M,
define D(x, y) =d(x, z) +d(z, ¥) and D(y, x) =d(3, x) where z is the
point of F(y) closest to x and d is the usual metric for the plane.
Assume x and y are distinct points of M. Note that F(x) and F(y)
are disjoint. Let z and w be points of F(x) and F(y) respectively such
that d(z, w)=d[F(x), F(y)]. Define D(x, y)=d(z, w)-+d(w, v).
Finally, if x=v or x and y are points of Q, define D(x, y) =d(x, y). D
clearly satisfies properties (1) and (2) above. The e-balls then form a
base for some topology of .S. Assume S has this topology. .S is clearly
a Hausdorff space.

LEMMA 1. Each e-ball is connected.

Proor. Suppose to the contrary for some p in S and positive e
there are nonempty disjoint open sets U and V such that UUV
=B(p, €). Assume p is a point of Q. Then B(p, €) contains the interval
of rationals (p—e, p+€)M\Q. There are open intervals G and H on
the x-axis, contained in U and V respectively, such that the usual
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distance from G to H is less than ¢/3. B(p, €) contains all points of M
with second coordinates less than €/3 which lie in an equilateral
triangle which has base (p—e, p-+e€). Thus there is a point ¢ in
MMNB(p, € such that F(q) intersects both G and H. Thus ¢ is a
limit point of both U and V, a contradiction.

Therefore p is in M. In this case, B(p, €) consists of p together with
two sets each like the e-ball in the above. By a similar argument, each
of the two sets is connected. Furthermore  is a limit point of the
two sets. This involves a contradiction.

COROLLARY. S is a countable connected Hausdorff space which is
locally connected, quasimetric and contains Q as a dense subspace.

3. A countable connected quasimetric extension of QX Q having
a dispersion point. This space is Urysohn and also has differing
dimensions.

Construction. Let X =(QXQ)\UZ\U {w} where Q denotes the ra-
tionals, Z the integers and w = (m, +/2). X endowed with the topology
described below is the desired example. Let F be a function from Z
into the plane such that (1) for each z in Z, F(2) is not in X and the
only image of F on the line wF(2) is F(z), and (2) F[Z]is dense in the
plane. For each z in Z, let G(2) be the midpoint of the line segment
wF(z). A quasimetric D for X is defined next in terms of the usual
metric d for the plane. First let d* be the usual bounded metric for
the plane, d*=d/14d. Let x and y be points of X, let ¢ and b be
points of X —Z and let z be a point of Z. Define D as follows.

1. D(a, b) =d*(a, b).

2. D(z, a) =min[d*(a, F(2)), d*(a, G(2))].

3. D(x, y) =1 for x=y.

4. D(x, x) =0.

The triangle inequality and positive definite property follow imme-
diately. Let X have the topology induced by the quasimetric D.

Notice if € is a positive number less than one, an e-ball with center
a point of M=(QXQ)\U{w} is just the common part of M and an
open disc with center the point. An e-ball with center a point z of Z
is just the union of two such rational discs with centers F(z) and
G(2) together with 2. Thus QX Q is dense in X, Z is closed in X, and
each have their usual topologies as subspaces of X.

LEMMA 2. X is connected.

ProoF. Suppose X is the union of two nonempty disjoint open
sets U and V such that U contains w. Since each point of Z is a limit
pointof Q X Q, thereisa point xoin QX QM V. For each point x in the
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plane, let S(x, €) denote the e-disc with center x relative to the usual
metric d. There exist a point 2; of Z and a positive e such that
S(G(z1), )N Q X Qliesin V and ¢ <t/2 where t =d(w, F(z1)). Let x; be
a common point of S(G(z1), t1) and Q X Q. There exist a point 2; of Z
and a positive & <t/22? such that F(z.) is in S(G(21), &) and S(G(z2,), €2)
MNQXQliesin V. Let x; be a common point of S(G(2z), €) and Q X Q.
Continue this process. It is easily seen that for each natural number

n, d(w, x,) <[n+1]t/27. Therefore x1, xi, - - - converges to w in
the plane. Therefore w is a limit point of V in X, which is a contra-
diction.

LEMMA 3. If x and y are points of X — {w}, then X — {w} is the
union of disjoint open sets U and V containing x and y respectively.

Proor. Since w=(+/2, ), and 7 is transcendental, a line through
w containing a point of QX Q cannot have rational slope. Therefore
each line through w contains at most one point of Q X Q. Let L be a
line through wsuch that L does not intersect (Q X Q)\UF[Z]and (1) L
separates x and y if both are in Q X Q, (2) L separates F(x) and F(y)
if x and y are in Z, and (3) L separates F(x) and y if x is in Z and y
isin QX Q. Let M, be the set of all points of Q X Q on one side of L
and M, the set of all such points on the other. Let N; be the set of
all z in Z such that F(z) is on the M, side of L for =1, 2. Let U
= M;\UN, and V=M,\UN,. Then U and V are disjoint and open in
X—w, X—w=UUYV,and xisin one of U and V and y is in the other.

LeMMA 4. X is a Urysohn space.

PROOF. Suppose x is a point of X —Z. Let U and V be the inter-
sections of X —Z with open discs in the plane having centers x and
w and each having radius e=d(w, x) /4. Clearly, no pointof X —Z isa
limit point in X of both U and V. Suppose some point 2z in Z is a
limit point of U. Then d(x, F(z)) <€ or d(x, G(3)) Se. In either
case d(w, F(2))>eand d(w, G(z))>e. Thus z is not a limit point of V.
Therefore TNV = .

Now suppose x is a point of Z. Let Uy, Uz and V be the intersections
of X —Z with open discs in the plane having centers F(x), G(x) and
w respectively and each having radius d(G(x), w)/4. From the first
part of the proof, TyN\V =T,N\V =. Let U= U;\JU,\J{x}. Then
TNV =TONT)VTNTHVU{x}NT)=4.

Finally, suppose x and y are points of X —w. From Lemma 3,
there are disjoint open sets U; and V containing x and y respectively
such that X —w=U,\UV. There are disjoint open sets U, and V,
containing x and w respectively. Let U= UyN\U,. Then UNV = &.
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CoOROLLARY. X s a countable connected quasimetric Urysohn space
which has a dispersion point and contains Q X Q as a dense subspace.

4. Dimension.

LEMMA S. S and X are each one dimensional in the Menger-Urysohn
sense.

PRroOF. In each space, each point has arbitrarily small e-neighbor-
hoods with boundaries consisting of isolated points in the relative
topology.

LEMMA 6. S and X are each infinite dimensional in the Lebesgue
sense.

PRroOF. Let P be the set of all points in .S with second coordinate
greater than 1. Then P is closed and homeomorphic to Z. Let # be
a positive integer. Then P can be partitioned into subsets Py, - - -,
P, such that for each relatively open set U in Q, P; contains a limit
point of U for i=1, - - -, n. Let U;=(S—P)UP; fori=1, - - -, n.
Then Uy, - - -, Us is an open cover of S. Suppose G is an open cover
of S which refines this cover. Let Gi be a member of § which lies in
U,. Then QN\G; is a nonempty open set since Q is open and dense.
Let p, be a limit point of Q/M\G; in P,. Let G, be a member of § which
contains p,. Then G, lies in U,. QNMG1NG; is nonempty since p; is a
limit point of QMGi. Thus QNMGING: has a limit point p; in Ps.
Continuing in this manner, we have distinct members Gy, - - -, G,
of G with a common point. Thus the order of G is at least #. Since
this holds for each positive integer, S is infinite dimensional in the
Lebesgue sense.

The preceding argument when modified by replacing P by Z, Q
by QX Q and S by X establishes the desired result for X.

The author wishes to thank B. J. Pearson for helpful suggestions
regarding the presentation of results in this note.

REFERENCES

1. R. H. Bing, A connected countable Hausdorff space, Proc. Amer. Math. Soc. 4
(1953), 474. MR 15, 729.

2. M. Brown, 4 countable connected Hausdorff space, Bull. Amer. Math. Soc. 59
(1953), 367. Abstract #423.

3. P. Erdos, Some remarks on connected sets, Bull. Amer. Math. Soc. 50 (1944),
442-446. MR 6, 43.

4. P. Fletcher, H. Hoyle and C. Patty, The comparison of topologies, Duke Math.
J. 36 (1969), 325-331. MR 39 #3441.

5. S. P. Franklin and G. V. Krishnarao, 4 topological characterization of the real
line, Notices Amer. Math. Soc. 16 (1969), 694. Abstract #69T-G78.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



360 G. G. MILLER

6. S. W. Golomb, 4 connected topology for the integers, Amer. Math. Monthly 66
(1959), 663-665. MR 21 #6347.

7. E. Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503-509.
MR 8, 165.

8. A. M. Kirch, A countable, connected, locally connected Hausdorff space, Amer.
Math. Monthly 76 (1969), 169-171. MR 39 #920.

9. B. Knaster and C. Kuratowski, Sur les ensembles connexes, Fund. Math. 2
(1921), 206-255.

10. J. Martin, A countable Hausdorff space with a dispersion point, Duke Math. J.
33 (1966), 165-167. MR 33 #699.

11. G. Miller, 4 countable Urysohn space with an explosion point, Notices Amer.
Math. Soc. 13 (1966), 589. Abstract #636-48.

12. , A countable locally connected quasimetric space, Notices Amer. Math.
Soc. 14(1967), 720. Abstract #67T-541.

13. G. Miller and B. J. Pearson, On the connectification of a space by a countable
point set, J. Austral. Math. Soc. (to appear).

14. L. J. Norman, 4 sufficient condition for quasimetrizability of a topological space,
Portugal. Math. 26 (1967), 207-211.

15. P. Roy, A countable connected Urysohn space with a dispersion point, Duke
Math. J. 33 (1966), 331-333. MR 33 #4887.

16. R. A. Stoltenberg, On quasi-metric spaces, Duke Math. J. 36 (1969), 65-71.
MR 38 #3824.

17. A. H. Stone, 4 countable, connected, locally connected Hausdorff space, Notices
Amer. Math. Soc. 16 (1969), 422. Abstract #69T-D10.

18. P. Urysohn, Uber die Michtigkeit der Zusammenhingen Mengen, Math. Ann.
94 (1925), 262-295.

19. R. L. Wilder, 4 point set whick has no true qguasi-component, and which becomes
connected upon the addition of a single point, Bull. Amer. Math. Soc. 33 (1927), 423~
427.

UNIVERSITY OF VICTORIA, VICTORIA, BRITISH COLUMBIA, CANADA

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



