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Abstract. Two pathological countable topological spaces are

constructed. Each is quasimetrizable and has a simple explicit quas-

imetric. One is a locally connected Hausdorff space and is an exten-

sion of the rationals. The other is a connected space which becomes

totally disconnected upon the removal of a single point. This space

satisfies the Urysohn separation property—a property between Tí

and T¡—and is an extension of the space of rational points in the

plane. Both are one dimensional in the Menger-Urysohn [induc-

tive] sense and infinite dimensional in the Lebesgue [covering]

sense.

1. Introduction. The first example of a countable connected

Hausdorff space was given by Urysohn [18]. Other examples have

been given by Hewitt [7], Bing [l], Brown [2], Golomb [ó], Martin

[lO], Roy [15], Kirch [8], Stone [17], and Miller and Pearson [l3].

A connected space X has a dispersion point x provided X—x is

totally disconnected. X is a Urysohn space if for all distinct p and q

in X there are neighborhoods U and V of p and q respectively such

that U and V have disjoint closures.

The first example of a space having a dispersion point was given

by Knaster and Kuratowski [9]. Such spaces have been investigated

by Erdös [3] and Wilder [l9j. Roy [l5] has given an example of a

countable connected Urysohn space having a dispersion point.

Kirch [8] has given an example of a locally connected countable

connected Hausdorff space. Stone [17] has also announced the con-

struction of such an example. Recently Franklin and Krishnarao

[5] have announced an interesting application of such an example

due to F. B. Jones (unpublished).

The examples presented here are obtained by extending a metric

space by adjoining countably many limit points and extending the

distance function to a quasimetric A real valued function D(x, y) is

a quasimetric for a topological space provided that for points x, y, z

of the space:

1. D(x, y) ^0, the equality holding iff x=y.

2. D(x,y)+D(y,z)>D(x,z).
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3. The collection of e-balls, B(x, e) = [y:D(x, y) <e}, is a base for

the topology of the space.

Therefore a symmetric quasimetric is a metric. There are just two

essentially different ways of writing the triangle inequality (2) ; one

implies symmetry—D((x, y) =D(y, x)—the other, as we have written

it, does not.

The following characterization, originally due to Ribeiro [16], in-

dicates the severity of the existence of a quasimetric. A Ty space X

is quasimetrizable iff each point p has a base for its neighborhood

system X = Gy(p), G2(p), ■ ■ ■ such that for any points x and y,

x(zzGn+i(y) implies Gn+i(x)çZGn(y) for n = l, 2, • • - . Relations be-

tween Moore, metric and quasimetric spaces have been investigated

by Stoltenberg [ló]¡ related work may also be found in [4] and [l4].

The following examples indicate that a quasimetric space can be

quite pathological even though its distance function is the Euclidean

metric when restricted to a dense open subspace.

2. A countable locally connected quasimetric extension of the

rationals. This connected Hausdorff space has differing inductive and

covering dimensions and is not a Urysohn space.

Construction. Let O be the set of rational points on the x-axis, and

M the set of points above the x-axis with both coordinates rational.

Let m be a point of M. Define F(m) = {r, s\ where r and s are the

points of the x-axis which together with m are the vertices of an

equilateral triangle. Note that F(m) does not intersect S=Q\JM.

Let x and y be points of S. If x is a point of O and y a point of M,

define D(x, y) =d(x, z)-\-d(z, y) and D(y, x) =d(z, x) where z is the

point of F(y) closest to x and d is the usual metric for the plane.

Assume x and y are distinct points of M. Note that F(x) and F(y)

are disjoint. Let z and w be points of F(x) and F(y) respectively such

that d(z, w) =d[F(x), F(y)]. Define D(x, y)=d(z, w)-\-d(w, y).

Finally, if x = y or x and y are points of Q, define D(x, y) =d(x, y). D

clearly satisfies properties (1) and (2) above. The e-balls then form a

base for some topology of S. Assume S has this topology. S is clearly

a Hausdorff space.

Lemma 1. Each e-ball is connected.

Proof. Suppose to the contrary for some p in S and positive e

there are nonempty disjoint open sets U and V such that t/UF

= B(p, e). Assume p is a point of Q. Then B(p, e) contains the interval

of rationals (p — e, £+i)f~H?. There are open intervals G and H on

the x-axis, contained in U and V respectively, such that the usual

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



I97°l COUNTABLE CONNECTED SPACES 357

distance from G to H is less than e/3. B(p, e) contains all points of M

with second coordinates less than e/3 which lie in an equilateral

triangle which has base (p — t, />+«)• Thus there is a point q in

MC\B(p, e) such that F(q) intersects both G and H. Thus g is a

limit point of both U and V, a contradiction.

Therefore p is in M. In this case, B(p, e) consists of p together with

two sets each like the e-ball in the above. By a similar argument, each

of the two sets is connected. Furthermore p is a limit point of the

two sets. This involves a contradiction.

Corollary. 5 is a countable connected Hausdorff space which is

locally connected, quasimetric and contains Q as a dense subspace.

3. A countable connected quasimetric extension of OXO having

a dispersion point. This space is Urysohn and also has differing

dimensions.

Construction. Let X = (QY,Q)VJZKJ {co} where Q denotes the ra-

tionals, Z the integers and co = (ir, s/2). X endowed with the topology

described below is the desired example. Let F be a function from Z

into the plane such that (1) for each z in Z, F(z) is not in X and the

only image of F on the line uF(z) is F(z), and (2) F[Z] is dense in the

plane. For each z in Z, let G(z) be the midpoint of the line segment

u>F{z). A quasimetric D for X is defined next in terms of the usual

metric d for the plane. First let d* be the usual bounded metric for

the plane, d*=d/l+d. Let x and y be points of X, let a and b be

points of X — Z and let 2 be a point of Z. Define D as follows.

1. D(a, b) =d*{a, b).

2. D{z, a) =min[d*(cx, F(z)), d*(a, G(z))].

3. D(x, y) = 1 for xj^y.

4. D(x, x)=0.

The triangle inequality and positive definite property follow imme-

diately. Let X have the topology induced by the quasimetric D.

Notice if e is a positive number less than one, an e-ball with center

a point of M =(QXQ)^J }<o} is just the common part of M and an

open disc with center the point. An e-ball with center a point z of Z

is just the union of two such rational discs with centers F(z) and

G(z) together with z. Thus 0 X O is dense in X, Z is closed in X, and

each have their usual topologies as subspaces of X.

Lemma 2. X is connected.

Proof. Suppose X is the union of two nonempty disjoint open

sets U and V such that U contains co. Since each point of Z is a limit

point of Q X O, there is a point x0 in Q X QD V. For each point x in the
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plane, let S(x, e) denote the e-disc with center x relative to the usual

metric d. There exist a point zy of Z and a positive ei such that

S(G(zy), «Or\QX O lies in Fand éi<//2 where t=d(u, F(zy)). Letxx be

a common point of S(G(zi), ty) and QXQ. There exist a point z2 of Z

and a positive e2<t/22 such that F(z2) is in S(G(zy), ex) and S(G(z2), e2)

HOXQ lies in V. Let x2 be a common point of S(G(z2), e2) and OXÇ.

Continue this process. It is easily seen that for each natural number

n, d(ec, xn) <[n-\-l]t/2n. Therefore xy, x2, ■ ■ ■ converges to to in

the plane. Therefore co is a limit point of V in X, which is a contra-

diction.

Lemma 3. If x and y are points of X— {co}, then X— [iú\ is the

union of disjoint open sets U and V containing x and y respectively.

Proof. Since co = (V2, tr), and ir is transcendental, a line through

co containing a point of O X O cannot have rational slope. Therefore

each line through to contains at most one point of QXQ. Let L be a

line through wsuch that!, does not intersect (QXQ)^JF[Z] and (1) L

separates x and y if both are in QXQ, (2) L separates F(x) and F(y)

ii x and y are in Z, and (3) L separates F(x) and y if x is in Z and y

is in QXQ. Let Mi be the set of all points of OXO on one side of L

and M2 the set of all such points on the other. Let Ni be the set of

all z in Z such that F(z) is on the Mi side of L for i = l, 2. Let U

= MyVJNy and V=M2KJN2. Then U and F are disjoint and open in

X — to, X — co = TjyJ V, and x is in one of U and F and y is in the other.

Lemma 4. X is a Urysohn space.

Proof. Suppose x is a point of X — Z. Let U and V be the inter-

sections of X — Z with open discs in the plane having centers x and

co and each having radius e = d(o), x)/4. Clearly, no point of X — Z is a

limit point in X of both U and V. Suppose some point z in Z is a

limit point of Í7. Then d(x, F(z))z%e or d(x, G(z))z%e. In either

case d(co, F(z)) >e and d(co, G(z))>e. Thus z is not a limit point of V.

Therefore Fn F = 0.
Now suppose x is a point of Z. Let Ux, U2 and V be the intersections

of X—Z with open discs in the plane having centers F(x), G(x) and

co respectively and each having radius d(G(x), co)/4. From the first

p_art_of the proof, Vx£\V = V2C\V = 0. Let U= UyVJU2VJ{x}. Then
ur\v=(Uyr\v)yj(u2r\V)\j({x)rw)=0.

Finally, suppose x and y are points of X— co. From Lemma 3,

there are disjoint open sets Uy and F containing x and y respectively

such that X—w=UyUV. There are disjoint open sets U2 and F2

containing x and co respectively. Let U= UyC\ U2. Then U(~\ V = 0.
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Corollary. X is a countable connected quasimetric Urysohn space

which has a dispersion point and contains QXQ as a dense subspace.

4. Dimension.

Lemma 5. S and X are each one dimensional in the Menger-Urysohn

sense.

Proof. In each space, each point has arbitrarily small e-neighbor-

hoods with boundaries consisting of isolated points in the relative

topology.

Lemma 6. S and X are each infinite dimensional in the Lebesgue

sense.

Proof. Let P be the set of all points in 5 with second coordinate

greater than 1. Then P is closed and homeomorphic to Z. Let n be

a positive integer. Then P can be partitioned into subsets Pi, • • • ,

P„ such that for each relatively open set U in O, P¿ contains a limit

point of U for t-1, • • • , ». Let Ui = (S — P)\JPi for i = l, ■ ■ ■ , n.

Then Ui, • • • , U„ is an open cover of S. Suppose 9 is an open cover

of 5 which refines this cover. Let G\ be a member of 9 which lies in

U\. Then QDGi is a nonempty open set since O is open and dense.

Let p2 be a limit point of QC\G\ in P2. Let G2 be a member of 9 which

contains p2. Then G2 lies in U2. QC\G\C\G2 is nonempty since pi is a

limit point of Qi\Gx. Thus QC\Gir\G2 has a limit point pz in P3.

Continuing in this manner, we have distinct members G\, • • • , Gn

of 9 with a common point. Thus the order of 9 is at least n. Since

this holds for each positive integer, 5 is infinite dimensional in the

Lebesgue sense.

The preceding argument when modified by replacing P by Z, Q

by QXQ and 5 by X establishes the desired result for X.

The author wishes to thank B. J. Pearson for helpful suggestions

regarding the presentation of results in this note.
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